Welfare, Market Power, and Price Effects of Product Diversity: Canned Juices

Jeffrey M. Perloff and Michael B. Ward

Questions

What effect does the introduction or elimination of a differentiated product have on

- consumer surplus, producer surplus, welfare,
- Lerner measures of price markups,
- prices?

Why Care

- Food industries have rapid entry and exit of items, brands, and firms.
- Theoretical debate: Is there too little or too much differentiation?

Two types of product innovations

- New contents (new flavor, add carbonation,...)
- New size or package

New Contents

- Snapple's 2000 U.S. fruit drinks:
 - Diet Orange Carrot Fruit Drink
 - Raspberry Peach Fruit Drink
- Proctor & Gamble's new German Punica fruit juice drinks:
 - Canned carbonated drink: Punica Fruitshot
 - Aimed at teenagers

New size of package

- Welch's (National Grape Cooperative Assoc. Inc.) introduced new sizes
- Leads to relocation
 - Before: in one section of supermarkets
 - Now: in many supermarket aisles, vending machines, convenience stores, and membership wholesale clubs.

Innovation is faster now

- 1999: 1/3 of Welch's sales from products introduced within the last 5 years
- Early 1990s: New products accounted for only 1/10 of overall sales

Theoretical literature on optimal differentiation

- Spence 1976, Dixit-Stiglitz 1977, Salop 1979
- Deneckere and Rothschild (1986) model nests
 - Salop spatial model
 - Perloff-Salop representative consumer model

Deneckere and Rothschild

- Adding a brand benefits fewer consumers in spatial than in representative consumer model
- Consequently
 - too many brands in a spatial model (competition is localized)
 - too many or too few in a representative consumer model

Small empirical literature on welfare

- Hausman (1996) and Nevo (2000): cereal
- They concentrate on the implications for measuring the consumer price index

Large empirical literature: Effects of entry on prices/market power

- Hausman (1996): price effects on similar products from entry of a new cereal
- Kadiyali, Vilcassim, and Chintagunta (1999): When 1 of 2 national yogurt manufacturers introduces a new variant, it gains price-setting power; firms' combined sales increase

Outline

- Discuss theoretical implications of a linear random utility demand system for oligopoly equilibrium
- Show how to estimate theoretical model using a random-parameter, discrete choice model
- Present our estimates of demand
- Simulate market power, price, and welfare effects

Linear Random Utility Model

- Perloff-Salop (1985) model (see also Anderson-de Palma-Thisse 1992)
- Each of the i = 1,..., n firms produces a differentiated product with quantity Q_i
- Each of j = 1,..., N consumers buys 1 unit: S_i Q_i = N

Consumer j's conditional indirect utility is

$$\tilde{V}_{ij} = a - p_i + \boldsymbol{q}\boldsymbol{z}_{ij},$$

where

- a = attribute or quality of a good
- p_i = real price of firm i's product
- z_{ij} = a random variable with mean zero, distributed IID F(.) with density f(.)
- q = preference intensity: the larger q, the less important price is in determining the variant a consumer buys

Nash-Bertrand Equilibrium Price

- Let *m* = constant marginal cost
- Symmetric short-run equilibrium price is

$$p = c + \boldsymbol{q} / [n(n-1)\hat{\Gamma}(n)],$$

where

$$\hat{\Gamma}(n) = \int_{-\infty}^{\infty} f^{2}(\mathbf{z}) [F(\mathbf{z})]^{n-2} d\mathbf{z}.$$

- Thus,
 - markup is proportional to q
 - *p* is proportional *c*.

Effect of Entry on Price

- Adding One More Firm
 - decreases the short-run equilibrium p iff $(n+1)\hat{\Gamma}(n+1) (n-1)\hat{\Gamma}(n) > 0$
 - p decreases with 1 more firm for logit
- Infinite number of firms $(n \rightarrow \infty)$: $p \rightarrow m$ if
 - f(.) is bounded from above, or
 - $\lim_{z\to\infty} f'(z)/f(z) = -\infty$

Effect of Entry on Price

- Probit: $p \rightarrow m$
- Logit: $p \rightarrow m + m = m + s\sqrt{6}/p$

Generalized Random Utility Model

- Each firm sells one or more products indexed by i
- In each period, the indirect utility for consumer j is

$$\hat{V}_{ij} = a_i - p_i + \boldsymbol{e}_{ij} + \boldsymbol{z}_{ij},$$

- ε_{ii} ~ multivariate normal
- ζ_{ii} ~ IID extreme value
- 2 error terms with different distributions ⇒
 equilibrium properties ≠ those of pure logit or
 probit

Relation to Logit

- Integrating out ϵ_{ij} , we get a logit-like specification
- AdPT show that a representative consumer's utility function (suppressing j) consistent with this model is

$$U = \begin{cases} \sum_{i=1}^{n} a_i Q_i - \mu \sum_{i=1}^{n} Q_i \ln \frac{Q_i}{N} + Q_0 & \text{if } \sum_{i=1}^{n} Q_i = N, \\ -\infty & \text{otherwise} \end{cases}$$

Second term on RHS is μ×N×entropy

Two Interpretations of µ

- 1. Scale parameter in logit
- 2. AdPT show μ plays same role as θ in PS model
 - It captures variety-seeking behavior of the representative consumer
 - Larger µ ⇒ greater preference for diversity.
 - $\mu \rightarrow 0 \Rightarrow$ diversity not valued; consumer buys only variant with largest net surplus = a_i p_i
 - $\mu \to \infty \Rightarrow$ consumption is divided equally among all available variants.

Random-Parameter Discrete-Choice Model

- Use random-parameter discrete-choice model to estimate theoretical model
 - Berry, Levinsohn, and Pakes (1995)
 - Nevo (2000)
- We
 - don't observe individuals' choices
 - do observe aggregate choice
 - model demand as depending on observed and unobserved product characteristics and price
 - capture these unobserved effects using random parameters

Random-Parameter Logit

- RPL generalizes logit
- Allows coefficients of characteristics, Ω_j , to vary randomly over characteristics rather than be fixed

Conditional Indirect Utility

Consumer *j*'s conditional indirect utility for item *i* in period *t* is

$$\hat{V}_{ij} = X_{ij}(\boldsymbol{b} + \boldsymbol{h}_{ij}) + \boldsymbol{z}_{ijt} = X_{ij}\boldsymbol{b} + \boldsymbol{e}_{ijt} + \boldsymbol{z}_{ijt}$$

- X_{it} = vector of observed product characteristics
- β = vector of population means
- η_j = individual deviationj (consumer's taste relative to the average tastes) ~ IID normal
- ζ_{ijt} = an unobserved random term~ IID type 1 extreme value

Estimation

- We can estimate ß, but we do not observe η_i for each consumer
- Thus, the unobserved portion of utility,

$$X_{it}\eta_j + \zeta_{ijt} \equiv \varepsilon_{ijt} + \zeta_{ijt},$$

is correlated over products and time because of the common term η_i

RPL vs Logit

 RPL avoids unattractive restrictions of the usual logit or nested logit models:

	Logit, Nested Logit	RPL
Coefficients	same for all products and time	vary over products and time
IIA	yes (within nests)	no

 McFadden and Train show that RPL can appx. any substitution patter

Demand Equations

Suppressing time, t, index and integrating out the ?_{ij} ~ IID extreme value, we get share for item i purchased by individual j:

$$\tilde{S}_{ij} = \frac{e^{(X_i \boldsymbol{b} - p_i + \boldsymbol{e}_{ij})/\boldsymbol{m}}}{\sum_{l=1}^{n} e^{(X_l \boldsymbol{b} - p_l + \boldsymbol{e}_{lj})/\boldsymbol{m}}}$$

Simplifying Demand Equation

• Integrate out the population distribution of the taste parameter ε_{ij} ~ IID normal and obtain item share:

$$S_i = \int \tilde{S}_{ij} f(\boldsymbol{e}) d\boldsymbol{e}$$

• Total number of units purchased is *N*, so demand equations are

$$Q_i = NS_i$$
.

Expenditure Function

Expenditure function is

$$Z = \overline{U} - N \mathbf{m} \ln \left[\int_{i=1}^{n} e^{(a_i - p_i + \mathbf{e}_{ij})/\mathbf{m}} f(\mathbf{e}) d\mathbf{e} \right]$$

for any utility level

Integrating

- High-dimensional integrals are difficult to calculate analytically
- Thus, we approximate product share using simulations

Simulations

- S_i is approximated by a sum over randomly chosen values of ε_{ii}
- ϵ_{ij} is drawn 50x from its distribution
- Get unbiased estimator, whose variance decreases as number of draws increases
- Simulated estimator is smooth, strictly > 0 for any realization of finite draws, so log of simulated probability is always defined
- Under regularity conditions, estimator is consistent and asymptotically normal

Own Elasticities

Own price elasticity for item i is

$$E_{ii} = \frac{p_i}{\mu S_i} \int \tilde{S}_{ij} \left(\tilde{S}_{ij} - 1 \right) f(e) de$$

- Standard logit:
 - $E_{ii} = p_i(S_i 1)$
 - Own price elasticity is proportional to price

Cross-Price Elasticity

 Cross-price elasticity (effect of a change in price of k on quantity of i) is

$$E_{ik} = \frac{p_k}{\mu S_i} \int \tilde{S}_{ij} \tilde{S}_{kj} f(e) de > 0$$

• Standard logit: $E_{ik} = p_k S_k$.

Price Effects

- Theorem: An increase in one good's price, holding all other goods' prices fixed, causes the shares of other goods to rise for any discrete-choice model
- Therefore,
 - In logit, elimination of a good ⇒
 - other goods' shares rise ⇒
 - other goods' own price elasticities rise ⇒
 - prices of all other goods rise
 - In our model, price may rise or fall

Data

- Information Resources Incorporated's InfoScanTM data
- National grocery store data
- Covers 29 "months" of 4 weeks each (13 months to a year)
 - First month ends December 8, 1996
 - Last month ends January 31, 1999

Popular Canned Products

- Flavor.
 - vegetable
 - fruit punch
 - tomato
 - pineapple
 - apple
 - grape
 - citrus

- Type:
 - juice
 - juice drink
 - nectar
 - drink
 - juice cocktail
- Count:
 - 1
 - 6
 - 12
 - 24
 - 4

10 Best Selling Items

	Oz.	% Best Seller
V8 Canned Vegetable Juice (Campbell Soup)		100
Dole Pineapple Canned Fruit Juice (Dole)		64
Juicy Juice Fruit Punch (Nestle)		61
Seneca Apple Juice (Seneca)		52
Juicy Juice Grape Juice (Nestle)		49
Campbell's Tomato Juice (Campbell)		49
Juicy Juice Cherry Juice (Nestle)	46	48
Juicy Juice Berry Blend Juice (Nestle)	46	48
V8 Canned Vegetable Juice, 6 count		46
Hawaiian Punch, 12 count		44

Endogeneity

- Unobserved quality variation may introduce spurious correlation between average price and average sales across brands
- Low-quality brand would tend to have fewer sales than other brands for some fixed price
- However, lower quality item is likely to have a relatively low price (firm chooses price optimally)
- To account for this source of endogeneity, we use a fixed-effects model with a dummy for each brand to capture unobserved quality variation at brand level
- Hausman-Wu test strongly rejects the alternative hypothesis of random effects

	ß/µ		ß/µ
Price (\$)	-3.638*	Nectar Drink x Time	0.005
Feature & Display (%)	0.036	Nectar x Time	0.084
Display Only (%)	0.012	Sparkling Juice Drink x Time	-0.294*
Feature Only (%)	-0.003	Flavor (28)	0.515
Size (oz)	-0.011	Firm (70)	0.448
Count (# of cans)	0.098*	Type (8)	2.172*
Size/Count	0.014	Brand (104)	0.368*
Drink x Time	0.055	Item (421)	0.337
Juice x Time	0.172*	Size	0.001
Juice Cocktail x Time	-0.068	Count	0.016
Juice Drink x Time	0.046	Size/ Count	0.057

Diversity (Slightly) Matters

- AdPT diversity coefficient is
 μ = -1/price coefficient = 0.275
- Asymptotic standard error = 0.0058, so we reject the hypothesis that $\mu = 0$
- Nonetheless, µ is closer to 0 than to ∞
- μ = 0 ⇒ consumer buys only the variant with the largest net surplus; low value on diversity

Market Power

Single-product firm's Lerner index is

$$L = (p - m)/p = -1/e$$

• *e* = own price elasticity

Profit

 Multiproduct firm's profit/period in a Bertrand-Nash equilibrium:

$$p = \sum_{k=1}^{m} (p_k - m_k) Q_k - hF - \tilde{F},$$

- *k* indexes only firm's *h* items
- m_k = firm's marginal cost for item k
- F = item fixed cost
- \tilde{F} = firm's overall fixed cost

Multiproduct Profit Maximization

The first-order condition is

$$\hat{L} = -(E')^{-1}S$$

- S = vector of shares of the items
- \hat{L} = vector whose k^{th} element is $L_k \times S_k$
- L_k = Lerner index for item k
- S_k = item k's share (of the firms total sales).
- Weighted elasticity = multiproduct elasticity (less elastic than own-price elasticity).

Price Effects

- Effect of entry or exit on price:
- Holding MC constant, we calculate the average price change from period 0 to period 1 as

 $S_i[p_i(1) - p_i(0)]q_i(0) / [S_i p_i(0)q_i(0)]$

Price Effects from Eliminating Pineapple Juice Products

Price Effect (%) on

Eliminated Pineapple Products	Dole's 6- Pack of 6 oz Cans	Other Pineapple Products	Non- Pineapple Products
Dole's 46 oz can	-4.1	0.3	0.8
All Dole products	-	0.8	0.9
All pineapple products	-	-	1.0

Consumer Surplus

Because income is fixed, consumer surplus (CS) using expenditure function (CV = EV)

Experiment

- Eliminate Dole's 46 oz pineapple juice can: price → to choke price (or ∞)
- Holding total quantity fixed,
 - 5.8% of quantity to Dole's 6 pack or 6 oz cans
 - 3.4% to other pineapple juices
 - 90.7% to other products
- Thus, consumers do not view small cans of Dole pineapple juice or other pineapple juices as close substitutes for Dole's large can

Eliminate Dole 46 oz (\$million/month)

Eliminate Dole 46 oz	Quantity Only	Quantity & Price
Consumer Surplus	-345	-495
Producer Surplus	-355	-301
Welfare	-700	-796

Eliminate All Dole Pineapple

Eliminate All Dole	Quantity Only	Quantity & Price
Consumer Surplus	-916	-1,183
Producer Surplus	210	417
Welfare	-706	-766

Eliminate All Pineapple

Eliminate All	Quantity	Quantity
Pineapple	Only	& Price
Consumer Surplus	-1,391	-1,677
Producer Surplus	497	720
Welfare	-894	-957

Actual Entry & Exit

- Entry: Jugos was a major "near" entrant during our period, going from trivial to major sales of Del Valle nectar and nectar drinks
- Exit: over our period, Conagra's vegetable juice division sales (Hunt's tomato juice) essentially disappeared

"Entry" by Jugos (\$million/month)

"Entry" by Jugos	Quantity Only	Quantity & Price
Consumer Surplus	84.3	130.3
Producer Surplus	85.6	51.6
Welfare	169.9	181.8

"Exit" by Conagra (\$million/month)

	Quantity	Quantity
"Exit" by Conagra	Only	& Price
Consumer Surplus	-20.8	-52.4
Producer Surplus	-248.9	-227.9
Welfare	-269.7	-280.2

Welfare Effects of Eliminating a Large Firm (allowing prices to adjust) \$million/month

	? PS	? CS	? W	? <i>W</i> /R
Nestle Canned Fruit Juice	2.05	-14.69	-12.65	1.20
Campbell Soup	0.76	-2.29	-1.54	0.39
Procter & Gamble	0.11	-4.32	-4.21	1.41
Dole	0.69	-1.47	-0.78	0.34
Nestle Canned Juice Drinks	-0.12	-0.69	-0.81	0.42
Citrus World	0.37	-1.13	-0.77	0.46
Texas Citrus Exchange	1.05	-1.51	-0.47	0.38
Empacadora de Frutas	-0.11	-0.52	-0.63	0.65

Summary

- Estimated a system of demands for canned juices using
 - random-parameter, discrete-choice model
 - with extreme value and normal errors
 - for a large number of firms and items
- Purpose: Determine welfare effects of
 - product diversity
 - entry and exit
 - mergers...

Conclusions

- Consumers place a relatively low value on variety
- Branded canned juice companies exercise substantial market power
- An exit leads to only moderately price changes in other products
- Allowing price to adjust usually leads to larger estimated welfare effects
- Entry or exit of a firm in this market has large welfare effects: larger than but of the same order of magnitude as revenue

Extensions: Mergers

- We can use the same type of analysis to examine the effects of mergers on
 - prices
 - welfare
- We can determine if the merger guidelines are reasonable for a given industry by simulating